
Explicit mean energies for the thermodynamics of systems of finite sequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 2269

(http://iopscience.iop.org/0305-4470/26/9/022)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 26 (1993) 269-2273, Printed in the UK 

COMMENT 

Explicit mean energies for the thermodynamics of systems of 
finite sequences 

C L Frenzen 
Department of Mathematics, Naval Postgraduate Schwl, Monterey, California 93943, USA 

Received 21 June 1992, in final form 26 October 1992 

Abstract. WiSlicki has suggested that the Hamming distance between binary sequences (or 
strings, or bit-shinps) might serve as an interaction energy. The panition function and related 
thermodynamic quantities could then be calculated and used to investigate ensembles of binary 
string systems evolving. for example, according to cellular automata rules. In this note we 
consmct the explicir mean energies for ensembles whose elements consist of N bit-strings, each 
of length M. The N bit-strings have nl, "2,. . . , n~ 1s and M - nl. M - n2,. . . , M - nN Os. 
respectively, where 0 Q ni Q M. i = 1.2, . . . , N. The energy of N interacting bit-strings is 
taken to be the painvise sum of the Hamming distances khveen individual pairs of bit-strings. 

Recently WiSlicki (1990) investigated the possibility of characterizing the output of finite 
sequences of symbols from a dynamical system by constructing thermodynamic-like 
characterisiics of the  output ensemble. Specifically, he considered a system consisting of N 
binary strings (or bit-strings) of length M, i.e. N sequences whose individual elements are 
M Os and 1s. The string$ in this set interact with each other through some specified relation 
structure, and WiSlicki concentrated on the important case where each string in the system 
interacts with every other string in the system, giving rise to N(N - 1)/2 interactions. 

Interacting strings Si and S, were characterized by an energy of interaction Eij.  the 
Hamming distance d(Si,  Sj), so that 

Eij = d(Sj ,  Sj) . 
The Hamming distance d(S', Sj) is the number of places where the strings Si and Sj 

differ, or equivalently, the number of i s  in the string Si @ Sj, where @ stands for bitwise 
addition of strings modulo 2. Equation (1) implies that the production of either string 
from the other costsat least d(S i ,  Si) 'energy units', where the latter measures the cost of 
changing a bit. 

WiSlicki's intention was to introduce a method for characterizing ensembles of binary 
strings representing the output of a form& system; for example, an ensemble of N bit- 
strings evolving according to cellular automata rules. Cellular automata have been used 
to model pattem formation in dendritic structures, reaction-diffusion processes, molecular 
dynamics, soliton behaviour and a number of other physical systems (see Wolfram 1986, 
for example). Though the author is unaware of any physical systems which can be directly 
modelled by the formal system considered by WiSlicki, it is quite possible that his ideas 
could find application in some models of physical systems. 

For a system of N interacting binary strings (SI, S2, . . . , SN), each of length M, suppose 
that the location of Os and Is in the strings is random except for the constraint that the 

0305470/93/092269+05$07.50 0 1993 IOP Publishing Ltd 2269 



2270 C L Frenzen 

N stringsSI,S2 ,..., SN haven1.n~ ,..., R N  l s a n d  M - n l , M - n z  ,..., M - n N  Os 
respectively. The ensemble of all possible such N strings has k ) 6,) . . . (,",) elements. We 
assume the N strings interact painvise (all known interactions'in physics occur this way) 
so that from (1) the combined energy of interaction of these N strings is 

M M  

There are (t) terms in the sum in (2). 
In order to calculate thermodynamic analogues for systems of binary strings, WiSlicki 

used statistical mechanics (e.g. Huang 1963) to define the thermodynamic energy U and 
the thermodynamic entropy S as 

where Z N ,  the partition function of the fixed N system, is defined by 

Z N  = Cexp(-BEt) .  (4) 
k 

The quantity Ek in the sum in (4) is the energy of the kth state. The formal parameter B 
is called the inverse temperature. If the energy spectrum is known, ZN can be calculated 
from (4) and the energy U and the entropy S can be determined from (3). Alternatively, 
one can determine the probability pk of finding the system in the energy state Ei  and thus 
calculate the mean energy ( E ) ,  where 

k 

Equating the thermodynamic energy U in (3) and the mean energy ( E )  in (5 )  yields 

u(P) = ( E )  (6) 

and the solution of (6) for ,9 yields the equilibrium temperature. One can see from (6) 
that explicit knowledge of ( E )  would be useful in determining the equilibrium inverse 
temperature p, a parameter which could be used to describe the ensemble. 

WiSlicki (1990) considered the~simplest non-trivial case (N = 2)  of two interacting 
strings of length M with n1 and n2 Is and M - nl and M - n2 Os respectively. In the 
special case for which n l  = nz = ~ n  and M 2n he determined the partition function Z Z  
and, using (3) and (6). gave asymptotic formulas (as n 3 CO) for U, p, and S in terms of 
( E ) .  Using an expression for pk obtained from combinatorial arguments together with (5). 
he gave an explicit expression for ( E ) ,  ( E )  = n ,  in the special case when nl = n2 = n and 
M = 2n. WiSlicki remarked that the determination of ( E )  in general from (5 )  was difficult 
because of the presence of factorials in the sum and that, in practice, numerical methods 
were usually necessary. 

The purpose of this note is to explicitly calculate ( E )  for arbitrary N, M ,  and 
n l ,  n2, . . . , nN. This result is given in (19). It should be useful in future investigations 
of the thermodynamics of systems of finite sequences. 

Suppose the positive integers N and M and the N-tuple ( n l ,  112, . . . , nN) are given, with 
0 < n; 6 M for i = 1,2, .  . . , N .  The sample space C ~ N  has d,)Q,) . . . c) elements, each M M  
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consisting of an N-tuple of binary-strings of length M ,  (SI, Sz, . . . , SN). Each Si has ni 1s 
and M - ni Os, i = I ,  2, . . . , N. Note that nl ,  nz.. . . , nN are the same for all elements in 
the sample space ‘2,. 

Pick i and j so that 1 < i c j < N and define the energy of interaction of the pair 
of strings (Si, Sj)  to be E;, = d ( S i , S j )  as in ( 1 ) .  This defines a random variable Eij on 
the sample space QN. Its mean value will allow us to determine the mean energy of an 
element in QN. 

To determine the possible energies Ejj for an element in QN and the distribution of 
these values over the sample space Q N  we proceed in the following way. For an element 
in Q N  there are (:) ways to place the ni 1s in Si-leaving the remaining M - ni bits in 
Si as Os. After selecting the positions of the ni Is in Si in some manner, construct the Sj 
of that element by putting k Os and ni - k 1s in the spaces in Sj which coincide~with the 
locations of the ni 1s in Si. The integer k is constrained by the inequalities 

O < k < n ;  - n i - k < n j  (7) 

since Si and Sj have n; and nj 1s respectively. This method of placing k Os and ni - k 1s 
in Sj contributes an amount k to d ( S i ,  Sj). In the remaining M - ni spaces in Sj we must 
place nj - (ni - k )  1s and 

M -n; -In, -(ni - k ) J  = M -nj - k  

Os, where k satisfies the inequality 

k < M - n j  (8) 

since Sj has M - nj Os. The inequalities in (7) and (8) together imply that 

kmin < k < kmx (9) 

where 

kmi. = max(0, ni - n j }  kmx = min[ni, M - n j } .  (10) 

Since the remaining M -ni spaces in Sj coincide with Os in Si and we are placing nj-(ni-k)  
Is into them, we get an additional contribution of k + nj - ni to d(&, Si). Therefore 
d(Si, Sj)  = 2k + nj - ni, and we define the energy E; of this state to be 

.. 
E y = 2 k + n j - n i  (11)  

where the index k satisfies (9) and (10). 

( I l ) ?  By the process used to determine the energy state E:, it is clear that there are 
For a given k ,  how many elements of the sample space QN have energy E: given by 

(E) e) (k : c y n )  (c) (z)  . ’. (c) 
elements in Q N  for which the random variable Eij defined by (1) has the value E:. The 
integer k satisfies (9). and and the subscript indices i, j ,  r, s, . . . , f are related. by 

(r, s, . . . f] = [ l ,  2 , .  . ., N]/[i, j } .  
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Consequently the probability pf that the random variable Eij takes the value Ef in (11) 
on s 1 ~  is given by 

Now when m and n are integers and I is a non-negative integer, 

where the sum in (13) extends over all integers k and the binomial coeffients ('J are defined 
by 

r(r  - 1 ) .  . . (r - k + 1) 
k integer k > 0 

k integer k = 0 
k(k - 1). . , l  

(14) 

k integer k < 0 

(see, for example, Graham et ai 1989 p 169). In (13) and (14) s and r are real numbers; 
the definition in (14) is notationally useful because the limits on the sum in (13) need not 
be explicitly given. 

Combining (12) and (13) then gives 

Observe, in accordance with the previous remark, that because of the definitions of p? and 
(3 in (12) and (14). the only, non-zero terms in the sum in (15) are those for which k 
satisfies (9). 

To compute {Eij), the expected value of the random variable &j on QN, we use (11) 
and (15) to write 

(Note that in the N = 2 case (where i = 1 and j = 2) WiSlicki inexplicably fails to include 
the n2 - nl term of (16) in his equation ( I l ) . )  Now 

and so by combining (12), (13), (16) and (17) we obtain 
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For a given i < j < N, (18) explicitly gives the mean value of the interaction energy Eij. 

or equivalently, the mean value of the Hamming distance d(S;, Sj) ,  on QN. The mean 
interaction energy (E;,) is symmetric in ni and nj and tends to ni +nj as n ; / M  and nj f M  
both tend to zero. 

To compute (E Iz .  . .N) ,  the expected value of the random variable El2 ...N defined on C ~ N  
by equation (2), note that El2 ...N is the sum of the N(N - 1)/2 individual random variables 
Eij = d(Si, Si), i -= j < N, each of which is defined on the sample space Q N .  The possible 
values of El2 ... N and their corresponding probabilities could be found from the the joint 
distribution of the d ( S i ,  Si) and so ( E , ~ . . . N )  could be calculated. This is a rather daunting 
task and a much simpler way to proceed is to observe that the mean or expected value 
of a finite sum of random variables is the sum of their mean or expected values (see, for 
example, Feller 1968). Equations (2) and (18) then imply 

giving an explicit formula for the mean energy of an element in Q N .  Note that when 
N = 2,nl = nz = n, and M = 2n, equation (19) reduces to 

( E 1 2 )  = n 

the special case considered by WiSlicki following his equation (17). 
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