Explicit mean energies for the thermodynamics of systems of finite sequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 262269
(http://iopscience.iop.org/0305-4470/26/9/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:16

Please note that terms and conditions apply.

COMMENT

Explicit mean energies for the thermodynamics of systems of finite sequences

C L Frenzen
Department of Mathematics, Naval Postgraduate School, Monterey, California 93943, USA

Received 21 June 1992, in final form 26 October 1992

Abstract

Wislicki has suggested that the Hamming distance between binary sequences (or strings, or bit-strings) might serve as an interaction energy. The partition function and related thermodynamic quantities could then be calculated and used to investigate ensembles of binary string systems evolving, for example, according to cellular automata rules. In this note we construct the explicit mean energies for ensembles whose elements consist of N bit-strings, each of length M. The N bit-strings have $n_{1}, n_{2}, \ldots, n_{N}$ is and $M-n_{1}, M-n_{2}, \ldots, M-n_{N} 0 \mathrm{~s}$, respectively, where $0 \leqslant n_{i} \leqslant M, i=1,2, \ldots, N$. The energy of N interacting bit-strings is taken to be the pairwise sum of the Hamming distances between individual pairs of bit-strings.

Recently Wisficki (1990) investigated the possibility of characterizing the output of finite sequences of symbols from a dynamical system by constructing thermodynamic-like characteristics of the output ensemble. Specifically, he considered a system consisting of N binary strings (or bit-strings) of length M, i.e. N sequences whose individual elements are M Os and Is. The strings in this set interact with each other through some specified relation structure, and Wiślicki concentrated on the important case where each string in the system interacts with every other string in the system, giving rise to $N(N-1) / 2$ interactions.

Interacting strings S_{i} and S_{j} were characterized by an energy of interaction $E_{i j}$, the Hamming distance $d\left(S_{i}, S_{j}\right)$, so that

$$
\begin{equation*}
E_{i j}=d\left(S_{i}, S_{j}\right) \tag{1}
\end{equation*}
$$

The Hamming distance $d\left(S_{i}, S_{j}\right)$ is the number of places where the strings S_{i} and S_{j} differ, or equivalently, the number of is in the string $S_{i} \oplus S_{j}$, where \oplus stands for bitwise addition of strings modulo 2. Equation (1) implies that the production of either string from the other costs at least $d\left(S_{i}, S_{j}\right)$ 'energy units', where the latter measures the cost of changing a bit.

Wiślicki's intention was to introduce a method for characterizing ensembles of binary strings representing the output of a formal system; for example, an ensemble of N bitstrings evolving according to cellular automata rules. Cellular automata have been used to model pattern formation in dendritic structures, reaction-diffusion processes, molecular dynamics, soliton behaviour and a number of other physical systems (see Wolfram 1986, for example). Though the author is unaware of any physical systems which can be directly modelled by the formal system considered by Wislicki, it is quite possible that his ideas could find application in some models of physical systems.

For a system of N interacting binary strings ($S_{1}, S_{2}, \ldots, S_{N}$), each of length M, suppose that the location of $O s$ and $1 s$ in the strings is random except for the constraint that the
N strings $S_{1}, S_{2}, \ldots, S_{N}$ have $n_{1}, n_{2}, \ldots, n_{N}$ 1s and $M-n_{1}, M-n_{2}, \ldots, M-n_{N}$ Os respectively. The ensemble of all possible such N strings has $\binom{M}{n_{1}}\binom{M}{n_{2}} \cdots\binom{M}{n_{N}}$ elements. We assume the N strings interact pairwise (all known interactions in physics occur this way) so that from (1) the combined energy of interaction of these N strings is

$$
\begin{equation*}
E_{12 \ldots . . N}=\sum_{i<j \leqslant N} E_{i j}=\sum_{i<j \leqslant N} d\left(S_{i}, S_{j}\right) \tag{2}
\end{equation*}
$$

There are $\binom{N}{2}$ terms in the sum in (2).
In order to calculate thermodynamic analogues for systems of binary strings, Wislicki used statistical mechanics (e.g. Huang 1963) to define the thermodynamic energy U and the thermodynamic entropy S as

$$
\begin{equation*}
U=-\frac{\partial}{\partial \beta}\left(\log Z_{N}\right) \quad S=-\beta^{2} \frac{\partial}{\partial \beta}\left(\frac{1}{\beta \log Z_{N}}\right) \tag{3}
\end{equation*}
$$

where Z_{N}, the partition function of the fixed N system, is defined by

$$
\begin{equation*}
Z_{N}=\sum_{k} \exp \left(-\beta E_{k}\right) \tag{4}
\end{equation*}
$$

The quantity E_{k} in the sum in (4) is the energy of the k th state. The formal parameter β is called the inverse temperature. If the energy spectrum is known, Z_{N} can be calculated from (4) and the energy U and the entropy S can be determined from (3). Alternatively, one can determine the probability p_{k} of finding the system in the energy state E_{k} and thus calculate the mean energy $\langle E\rangle$, where

$$
\begin{equation*}
\langle E\rangle=\sum_{k} p_{k} E_{k} \tag{5}
\end{equation*}
$$

Equating the thermodynamic energy U in (3) and the mean energy $\langle E\rangle$ in (5) yields

$$
\begin{equation*}
U(\beta)=\langle E\rangle \tag{6}
\end{equation*}
$$

and the solution of (6) for β yields the equilibrium temperature. One can see from (6) that explicit knowledge of $\langle E\rangle$ would be useful in determining the equilibrium inverse temperature β, a parameter which could be used to describe the ensemble.

Wislicki (1990) considered the simplest non-trivial case ($N=2$) of two interacting strings of length M with n_{1} and n_{2} ls and $M-n_{1}$ and $M-n_{2} 0$ s respectively. In the special case for which $n_{1}=n_{2}=n$ and $M \geqslant 2 n$ he determined the partition function Z_{2} and, using (3) and (6), gave asymptotic formulas (as $n \rightarrow \infty$) for U, β, and S in terms of $\langle E\rangle$. Using an expression for p_{k} obtained from combinatorial arguments together with (5), he gave an explicit expression for $\langle E\rangle,\langle E\rangle=n$, in the special case when $n_{1}=n_{2}=n$ and $M=2 n$. Wiślicki remarked that the determination of $\langle E\rangle$ in general from (5) was difficult because of the presence of factorials in the sum and that, in practice, numerical methods were usually necessary.

The purpose of this note is to explicitly calculate $\langle E\rangle$ for arbitrary N, M, and $n_{1}, n_{2}, \ldots, n_{N}$. This result is given in (19). It should be useful in future investigations of the thermodynamics of systems of finite sequences.

Suppose the positive integers N and M and the N-tuple ($n_{1}, n_{2}, \ldots, n_{N}$) are given, with $0 \leqslant n_{i} \leqslant M$ for $i=1,2, \ldots, N$. The sample space Ω_{N} has $\binom{M}{n_{1}}\binom{M}{n_{2}} \cdots\binom{M}{n_{n}}$ elements, each
consisting of an N-tuple of binary-strings of length $M,\left(S_{1}, S_{2}, \ldots, S_{N}\right)$. Each S_{i} has $n_{i} 1$ s and $M-n_{i} 0 \mathrm{~s}, i=1,2, \ldots, N$. Note that $n_{1}, n_{2}, \ldots, n_{N}$ are the same for all elements in the sample space Ω_{N}.

Pick i and j so that $1 \leqslant i<j \leqslant N$ and define the energy of interaction of the pair of strings (S_{i}, S_{j}) to be $E_{i j}=d\left(S_{i}, S_{j}\right)$ as in (1). This defines a random variable $E_{i j}$ on the sample space Ω_{N}. Its mean value will allow us to determine the mean energy of an element in Ω_{N}.

To determine the possible energies $E_{i j}$ for an element in Ω_{N} and the distribution of these values over the sample space Ω_{N} we proceed in the following way. For an element in Ω_{N} there are $\binom{M}{n_{i}}$ ways to place the n_{i} 1s in S_{i}-leaving the remaining $M-n_{i}$ bits in S_{i} as 0 s . After selecting the positions of the n_{i} 1s in S_{i} in some manner, construct the S_{j} of that element by putting $k 0 \mathrm{~s}$ and $n_{i}-k 1 \mathrm{~s}$ in the spaces in S_{j} which coincide with the locations of the n_{i} 1s in S_{i}. The integer k is constrained by the inequalities

$$
\begin{equation*}
0 \leqslant k \leqslant n_{i} \quad n_{i}-k \leqslant n_{j} \tag{7}
\end{equation*}
$$

since S_{i} and S_{j} have n_{i} and $n_{j} 1$ s respectively. This method of placing k os and $n_{i}-k$ 1s in S_{j} contributes an amount k to $d\left(S_{i}, S_{j}\right)$. In the remaining $M-n_{i}$ spaces in S_{j} we must place $n_{j}-\left(n_{i}-k\right) 1 \mathrm{~s}$ and

$$
M-n_{i}-\left[n_{j}-\left(n_{i}-k\right)\right]=M-n_{j}-k
$$

0 s , where k satisfies the inequality

$$
\begin{equation*}
k \leqslant M-n_{j} \tag{8}
\end{equation*}
$$

since S_{j} has $M-n_{j}$ os. The inequalities in (7) and (8) together imply that

$$
\begin{equation*}
k_{\min } \leqslant k \leqslant k_{\max } \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{\min }=\max \left\{0, n_{i}-n_{j}\right\} \quad k_{\max }=\min \left\{n_{i}, M-n_{j}\right\} . \tag{10}
\end{equation*}
$$

Since the remaining $M-n_{i}$ spaces in S_{j} coincide with 0 s in S_{i} and we are placing $n_{j}-\left(n_{i}-k\right)$ is into them, we get an additional contribution of $k+n_{j}-n_{i}$ to $d\left(S_{i}, S_{j}\right)$. Therefore $\mathrm{d}\left(S_{i}, S_{j}\right)=2 k+n_{j}-n_{i}$, and we define the energy $E_{k}^{i j}$ of this state to be

$$
\begin{equation*}
E_{k}^{i j}=2 k+n_{j}^{j}-n_{i} \tag{11}
\end{equation*}
$$

where the index k satisfies (9) and (10).
For a given k, how many elements of the sample space Ω_{N} have energy $E_{k}^{i j}$ given by (11)? By the process used to determine the energy state $E_{k}^{i j}$, it is clear that there are

$$
\binom{M}{n_{i}}\binom{n_{i}}{k}\binom{M-n_{i}}{k+n_{j}-n_{i}}\binom{M}{n_{r}}\binom{M}{n_{s}} \cdots\binom{M}{n_{t}}
$$

elements in Ω_{N} for which the random variable $E_{i j}$ defined by (1) has the value $E_{k}^{i j}$. The integer k satisfies (9), and and the subscript indices i, j, r, s, \ldots, t are related by

$$
\{r, s, \ldots t\}=\{1,2, \ldots, N\} /\{i, j\} .
$$

Consequently the probability $p_{k}^{i j}$ that the random variable $E_{i j}$ takes the value $E_{k}^{i j}$ in (11) on Ω_{N} is given by

$$
\begin{equation*}
p_{k}^{i j}=\frac{\binom{n_{i}}{k}\binom{M-n_{i}}{k+n_{j} n_{l}}}{\binom{M}{n_{j}}} \tag{12}
\end{equation*}
$$

Now when m and n are integers and l is a non-negative integer,

$$
\begin{equation*}
\sum_{k}\binom{l}{m+k}\binom{s}{n+k}=\binom{l+s}{l-m+n} \tag{13}
\end{equation*}
$$

where the sum in (13) extends over all integers k and the binomial coeffients $\binom{r}{k}$ are defined by

$$
\binom{r}{k}=\left\{\begin{array}{lll}
\frac{r(r-1) \cdots(r-k+1)}{k(k-1) \cdots 1} & k \text { integer } & k>0 \tag{14}\\
1 & k \text { integer } & k=0 \\
0 & k \text { integer } & k<0
\end{array}\right.
$$

(see, for example, Graham et al 1989 p 169). In (13) and (14) s and r are real numbers; the definition in (14) is notationally useful because the limits on the sum in (13) need not be explicitly given.

Combining (12) and (13) then gives

$$
\begin{equation*}
\sum_{k} p_{k}^{i j}=\frac{\binom{M}{n_{j}}}{\binom{M}{n_{j}}}=1 \tag{15}
\end{equation*}
$$

Observe, in accordance with the previous remark, that because of the definitions of $p_{k}^{i j}$ and $\binom{r}{k}$ in (12) and (14), the only non-zero terms in the sum in (15) are those for which k satisfies (9).

To compute $\left\langle E_{i j}\right\rangle$, the expected value of the random variable $E_{i j}$ on Ω_{N}, we use (11) and (15) to write

$$
\begin{equation*}
\left\langle E_{i j}\right\rangle=\sum_{k} p_{k}^{i j} E_{k}^{i j}=\sum_{k} p_{k}^{i j}\left(n_{j}-n_{i}+2 k\right)=n_{j}-n_{i}+\sum_{k} 2 k p_{k}^{i j} \tag{16}
\end{equation*}
$$

(Note that in the $N=2$ case (where $i=1$ and $j=2$) Wiślicki inexplicably fails to include the $n_{2}-n_{1}$ term of (16) in his equation (11).) Now

$$
k\binom{n_{i}}{k}= \begin{cases}n_{i}\binom{n_{i}-1}{k-1} & k \text { integer } k \geqslant 1 \tag{17}\\ 0 & k \text { integer } k \leqslant 0\end{cases}
$$

and so by combining (12), (13), (16) and (17) we obtain

$$
\begin{gather*}
\left\langle E_{i j}\right\rangle=n_{j}-n_{i}+\frac{2 n_{i}}{\binom{M}{n_{j}}} \sum_{k}\binom{n_{i}-1}{k-1}\binom{M-n_{i}}{k+n_{j}-n_{i}}=n_{j}-n_{i}+2 n_{i} \frac{\binom{M-1}{n_{j}}}{\binom{M}{n_{j}}} \\
=n_{j}-n_{i}+2 n_{i} \frac{\left(M-n_{j}\right)}{M}=n_{i}\left(1-\frac{n_{j}}{M}\right)+n_{j}\left(1-\frac{n_{i}}{M}\right) . \tag{18}
\end{gather*}
$$

For a given $i<j \leqslant N$, (18) explicitly gives the mean value of the interaction energy $E_{i j}$, or equivalently, the mean value of the Hamming distance $d\left(S_{i}, S_{j}\right)$, on Ω_{N}. The mean interaction energy ($E_{i j}$) is symmetric in n_{i} and n_{j} and tends to $n_{i}+n_{j}$ as n_{i} / M and n_{j} / M both tend to zero.

To compute $\left\langle E_{12 \ldots N}\right\rangle$, the expected value of the random variable $E_{12 \ldots N}$ defined on Ω_{N} by equation (2), note that $E_{12 \ldots N}$ is the sum of the $N(N-1) / 2$ individual random variables $E_{i j}=d\left(S_{i}, S_{j}\right), i<j \leqslant N$, each of which is defined on the sample space Ω_{N}. The possible values of $E_{12 \ldots N}$ and their corresponding probabilities could be found from the the joint distribution of the $d\left(S_{i}, S_{j}\right)$ and so $\left\langle E_{12 \ldots . . N}\right\rangle$ could be calculated. This is a rather daunting task and a much simpler way to proceed is to observe that the mean or expected value of a finite sum of random variables is the sum of their mean or expected values (see, for example, Feller 1968). Equations (2) and (18) then imply

$$
\begin{equation*}
\left\langle E_{12 \ldots N}\right\rangle=\sum_{i<j \leqslant N}\left\langle E_{i j}\right\rangle=\sum_{i<j \leqslant N}\left[n_{i}\left(1-\frac{n_{j}}{M}\right)+n_{j}\left(1-\frac{n_{i}}{M}\right)\right] \tag{19}
\end{equation*}
$$

giving an explicit formula for the mean energy of an element in Ω_{N}. Note that when $N=2, n_{1}=n_{2}=n$, and $M=2 n$, equation (19) reduces to

$$
\left\langle E_{12}\right\rangle=n
$$

the special case considered by Wislicki following his equation (17).

References

Feller W 1968 An Introduction to Probability Theory and its Applications (New York: Wiley)
Graham R L, Knuth D E and Patashnik O 1989 Concrete Mathematics (Reading, MA: Addison-Wesley)
Huang K 1963 Statistical Mechanics (New York: Wiley)
Wislicki w 1990 J. Phys. A: Math. Gen. 23 L121
Wolfram S 1986 Theory and Applications of Cellular Automata (Singapore: World Scientific)

